W1.62

Effect of C_2S on grindability and power consumption

1 Effect of C₂S

Table 1					
% C ₂ S in	multiplying factor				
clinker	for output	for sp. Power			
5	1.1	0.91			
10	1.05	0.95			
15	1	1.00			
20	0.95	1.05			
25	0.88	1.14			
30	0.82	1.22			
35	0.72	1.39			
40	0.7	1.43			

2 Effect of C₃S

In reverse effect, increase in GS, results in reduction in power required to grind.

Table 2				
C ₃ S content	multiplying			
in %	factor for			
	output			
10	0.46			
20	0.56			
30	0.67			
40	0.78			
50	0.9			
60	1			
70	1.1			

Graph 2

other values can be obtained by intra/extra polation 50 % increase in C_3S could result in an increase of 25-28 % in output

3 Lime saturation factor

An increase in lime saturation factor also increases output. lime saturation factor is expressed as Kind modulus (KM) KM=(100CaO-($1.65Al_2O_3+0.35Fe_2O_3$))/2.8SiO₂

Table 3			
LSR	grindability		
as KM	coefficient		
60			
70	0.5		
80	0.75		
90	1		
100	1.1		

4 Moisture in clinker affects grindability.

Wet clinker requires more power to grind than dry clinker between finenesses of 60- 95% passing 170 mesh increase in energy for grinding also increases with fineness of product For example:

		blaine	
	1 % moisture		
	2500	2700	2900
kwh/t	27.5	31.5	37
		2 % moisture	
kwh/t	31	36	43

source: Duda Cement Data Book